5 research outputs found

    Hemispheric differences in semantic cognition and their contribution to behaviour

    Get PDF
    This thesis investigated hemispheric differences in semantic cognition and their contribution to behaviour, using resting-state and task-based fMRI in conjunction with automated meta-analyses and cognitive decoding. The controlled semantic cognition framework proposes that distinct brain regions support the long-term representation of heteromodal conceptual knowledge and semantic control processes that retrieve currently-relevant aspects of knowledge. However, previous studies have not investigated whether these components have distinct patterns of lateralisation. Chapter 2 assessed intrinsic connectivity of four regions implicated in semantic cognition: anterior temporal lobe, angular gyrus, inferior frontal gyrus, and posterior middle temporal gyrus. Semantic sites in the left hemisphere showed connectivity with both control regions and default mode network, whilst their right hemisphere homotopes showed connectivity with control regions and visual and attentional systems. Semantic control regions showed the strongest lateralisation. Chapter 3 examined hemispheric specialisation of the anterior temporal lobes, strongly implicated in semantic representation. It assessed the relationship between differential intrinsic connectivity and behaviour outside the scanner on a semantic categorisation task previously shown to be sensitive to lateralisation. Graded differences in connectivity between left and right anterior temporal lobes, and from right anterior temporal cortex to the visual system related to semantic efficiency. Finally, Chapter 4 tested the specificity of the semantic control system and its relationship to domain-general control. Using a task known to engage domain-general inhibition, but introducing semantic content, this chapter yields evidence that regions implicated in semantic control are not sensitive to challenging tasks that require exercising controlled processing, and instead are specific to semantic processing. Together, these results constitute evidence for a component-process architecture in the semantic cognition system, with different patterns of lateralisation for the semantic representation and control systems. Within these systems, the results confirm the specific nature of semantic control, and fit with the graded-hub architecture of semantic representation

    Meaningful Inhibition : Exploring the Role of Meaning and Modality in Response Inhibition

    Get PDF
    We frequently guide our decisions about when and how to act based on the meanings of perceptual inputs: we might avoid treading on a flower, but not on a leaf. However, most research on response inhibition has used simple perceptual stimuli devoid of meaning. In two Go/No-Go experiments, we examined whether the neural mechanisms supporting response inhibition are influenced by the relevance of meaning to the decision, and by presentation modality (whether concepts were presented as words or images). In an on-line fMRI experiment, we found common regions for response inhibition across perceptual and conceptual decisions. These included the bilateral intraparietal sulcus and the right inferior frontal sulcus, whose neural responses have been linked to diverse cognitive demands in previous studies. In addition, we identified a cluster in ventral lateral occipital cortex that was sensitive to the modality of input, with a stronger response to No-Go than Go trials for meaningful images, compared to words with the same semantic content. In a second experiment, using resting-state fMRI, we explored how individual variation in the intrinsic connectivity of these activated regions related to variation in behavioural performance. Participants who showed stronger connectivity between common inhibition regions and limbic areas in medial temporal and subgenual anterior cingulate cortex were better at inhibition when this was driven by the meaning of the items. In addition, regions with a specific role in picture inhibition were more connected to a cluster in the thalamus / caudate for participants who were better at performing the picture task outside of the scanner. Together these studies indicate that the capacity to appropriately withhold action depends on interactions between common control regions, which are important across multiple types of input and decision, and other brain regions linked to specific inputs (i.e., visual features) or representations (e.g., memory)

    The structural basis of semantic control: Evidence from individual differences in cortical thickness

    Get PDF
    Semantic control allows us to shape our conceptual retrieval to suit the circumstances in a flexible way. Tasks requiring semantic control activate a large-scale network including left inferior prefrontal gyrus (IFG) and posterior middle temporal gyrus (pMTG) – this network responds when retrieval is focussed on weak as opposed to dominant associations. However, little is known about the biological basis of individual differences in this cognitive capacity: regions that are commonly activated in task-based fMRI may not relate to variation in controlled retrieval. The current study combined analyses of MRI-based cortical thickness with resting-state fMRI connectivity to identify structural markers of individual differences in semantic control. We found that participants who performed relatively well on tests of controlled semantic retrieval showed increased structural covariance between left pMTG and left anterior middle frontal gyrus (aMFG). This pattern of structural covariance was specific to semantic control and did not predict performance when harder non-semantic judgements were contrasted with easier semantic judgements. The intrinsic functional connectivity of these two regions forming a structural covariance network overlapped with previously-described semantic control regions, including bilateral IFG and intraparietal sulcus, and left posterior temporal cortex. These results add to our knowledge of the neural basis of semantic control in three ways: (i) Semantic control performance was predicted by the structural covariance network of left pMTG, a site that is less consistently activated than left IFG across studies. (ii) Our results provide further evidence that semantic control is at least partially separable from domain-general executive control. (iii) More flexible patterns of memory retrieval occurred when pMTG co-varied with distant regions in aMFG, as opposed to nearby visual, temporal or parietal lobe regions, providing further evidence that left prefrontal and posterior temporal areas form a distributed network for semantic control

    Dissociations in semantic cognition : Oscillatory evidence for opposing effects of semantic control and type of semantic relation in anterior and posterior temporal cortex

    Get PDF
    How does the brain represent and process different types of knowledge? The Dual Hub account postulates that anterior temporal lobes (ATL) support taxonomic relationships based on shared physical features (mole – cat), while temporoparietal regions, including posterior middle temporal gyrus (pMTG), support thematic associations (mole – earth). Conversely, the Controlled Semantic Cognition account proposes that ATL supports both aspects of knowledge, while left pMTG contributes to controlled retrieval. This study used magnetoencephalography to test these contrasting predictions of functional dissociations within the temporal lobe. ATL and pMTG responded more strongly to taxonomic and thematic trials respectively, matched for behavioural performance, in line with predictions of the Dual Hub account. In addition, ATL showed a greater response to strong than weak thematic associations, while pMTG showed the opposite pattern, supporting a key prediction of the Controlled Semantic Cognition account. ATL showed a stronger response for word pairs that were more semantically coherent, either because they shared physical features (in taxonomic trials) or a strong thematic association. These effects largely coincided in time and frequency (although an early oscillatory response in ATL was specific to taxonomic trials). In contrast, pMTG showed non-overlapping effects of semantic control demands and thematic judgements: this site showed a larger oscillatory response to weak associations, when ongoing retrieval needed to be shaped to suit the task demands, and also a larger response to thematic judgements contrasted with taxonomic trials (which was reduced but not eliminated when the thematic trials were easier). Consequently, time-sensitive neuroimaging supports a complex pattern of functional dissociations within the left temporal lobe, which reflects both coherence versus control and distinctive oscillatory responses for taxonomic overlap (in ATL) and thematic relations (in pMTG)

    Degrees of lateralisation in semantic cognition : Evidence from intrinsic connectivity

    No full text
    The semantic network is thought to include multiple components, including heteromodal conceptual representations and semantic control processes that shape retrieval to suit the circumstances. Much of this network is strongly left-lateralised; however, work to date has not considered whether separable components of semantic cognition have different degrees of lateralisation. This study examined intrinsic connectivity of four regions implicated in heteromodal semantic cognition, identified using large scale meta-analyses: two sites which have been argued to act as heteromodal semantic hubs in anterior temporal lobe (ATL) and angular gyrus (AG); and two sites implicated in semantic control in inferior frontal (IFG) and posterior middle temporal gyri (pMTG). We compared the intrinsic connectivity of these sites in left hemisphere (LH) and right hemisphere (RH), and linked individual differences in the strength of within- and between-hemisphere connectivity from left-lateralised seeds to performance on semantic tasks, in a sample of 196 healthy volunteers. ATL showed more symmetrical patterns of intrinsic connectivity than the other three sites. The connectivity between IFG and pMTG was stronger in the LH than the RH, suggesting that the semantic control network is strongly left-lateralised. The degree of hemispheric lateralisation also predicted behaviour: participants with stronger intrinsic connectivity within the LH had better semantic performance, while those with stronger intrinsic connectivity between left pMTG and homotopes of semantic regions in the RH performed more poorly on judgements of weak associations, which require greater control. Stronger connectivity between left AG and visual cortex was also linked to poorer perceptual performance. Overall, our results show that hemispheric lateralisation is particularly important for the semantic control network, and that this lateralisation has contrasting functional consequences for the retrieval of dominant and subordinate aspects of knowledge
    corecore